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bstract

Model identification from dynamic experimental data may involve the conduction of multiple experiments to identify a suitable model with
dequate accuracy. In contrast to the a priori specification of design sets, an iteratively conducted model-based experimental design exploiting
revious data promises significantly better results with lower effort. Yet, in dynamic systems, the inputs of the model to be identified often cannot
e designed directly, but depend on the experimental degrees of freedom. To allow for model-based design for the identification of dynamic
ybrid or fully unstructured models, a new design criterion is developed in this work. It is based on an input-space coverage approach and allows to

imultaneously design the experiment for multiple models to be identified. Incremental identification is applied to efficiently construct the unknown
odels from data. The resulting iterative design and identification methodology is illustrated on a reaction kinetic model identification for the

cetoacetylation of pyrrole in a simulation study.
2008 Elsevier B.V. All rights reserved.

ybrid

c
h
t
d
a
e
p
d
n
h
k

s

eywords: Experimental design; Dynamic model; Incremental identification; H

. Introduction

Mathematical models of chemical reaction processes are
eadily needed for a multitude of tasks including process design,
nalysis and optimization of process conditions [1] as well
s model-based control, see e.g. [2]. Often, a reliable model
f the process is unknown and needs to be identified from
xperimental data. Depending on the desired application and
n the available process knowledge, such process models may
e either structured (i.e. derived from physical knowledge),
nstructured (e.g. fully data-driven), or hybrid, i.e. combin-
ng both physically motivated and data-driven model parts. The
atter model building strategy has been shown to yield higher

rediction accuracies compared to purely data-driven models
3]. It is a favorable option for the identification of unknown
eaction kinetics from experimental data, if no structured model

Abbreviations: COV, Coverage design; FFC, Fractional factorial design;
IMO, Multiple input–multiple output; MISO, Multiple input–single output;
ND, Random design.
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andidates for the description of the reaction kinetics are at
and. The algebraic, data-driven models of the unknown reac-
ion kinetics are then identified from dynamic experimental
ata in a hybrid model structure consisting of the mole bal-
nces, reaction stoichiometries and the reaction kinetics, see
.g. [4–7]. Yet, the results of the identification process may
rove unsatisfactory to meet the needs required when using
ata from a single experiment only. Then, several experiments
eed to be planned and realized to obtain dynamic data with
igh information content for the identification of the data-driven
inetics.

A number of design techniques exist for the identification of
tructured models from dynamic data to discriminate between
odel candidates and to estimate model parameters with high

ccuracy, see e.g. [8–10]. Yet, these design approaches for
tructured model identification are not applicable to hybrid
r fully unstructured models due to the often vast number of
on-uniquely identifiable parameters in data-driven model struc-
ures and the modeler’s interest in prediction accuracy rather
han parameter accuracy. No model-based design approach is

nown to the authors for the identification of data-driven parts
n hybrid or fully unstructured models. A reason for the lack
f appropriate design techniques to be embedded in an itera-
ive design and identification process [11] may also be seen

mailto:Wolfgang.Marquardt@avt.rwth-aachen.de
dx.doi.org/10.1016/j.cej.2007.12.027
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Nomenclature

Roman symbols
c, c Concentration (scalar, vector)
d Space dimensionality
E Expected distance between data
f Generic function
f r, fr, Fr Reaction flux (scalar, vector, matrix)
H Heaviside step function
k Rate constant
m Generic model structure
nC, nD, nF Number of experimental designs
nE Number of experiments
nI Number of inputs
nO Number of outputs
nQ Number of samples
N Stoichiometric matrix
p Probability distribution
qin, qout Volumetric flow rates into and out of reactor
r, r, R Reaction rate (scalar, vector, matrix)
t Time
tf Batch time
ts Sampling interval
v, v, V Volume (scalar, vector, matrix)
x, x Input data (scalar, vector/matrix)
(x)q The q th row vector of matrix x
y, y Output data (scalar, vector)

Greek symbols
ασ Relative error level
� Prediction ratio
δcov Overall distance criterion (single output)
δ̆cov Overall distance criterion (multiple outputs)
δsst Distance criterion with respect to new data set
δtot Distance criterion with respect to available data

set
εc Relative prediction error for concentrations
εr Relative prediction error for reaction rates
θ Vector of model parameters
ϑ Distance measure
� Prediction convergence ratio
ξ, ξ Scaled input (scalar, vector/matrix)
(ξ)q The q th row vector of matrix ξ

σ Standard deviation
τ Dimensional scaling factor
ϕ Set of experimental conditions
ϕ� Optimal set of experimental conditions
ω, ω Random point (scalar, vector)

Calligraphic symbols
D Data set
S Set of chemical species
X Input set

Subscripts, superscripts and accents
(·)0 Initial value

(·)(k) Referring to k th output
(·)cov Referring to coverage design
(·)in Referring to feed
(·)max Maximum
(·)min Minimum
(·)pred Predicted (after identification process)
(·)rnd Referring to random design
(·)tot Referring to total set
(·)true True (simulated) quantity
(·̂) Estimated quantity
(·̄) Average
(·)T Matrix transpose

Mathematical notation
R Set of real numbers
X Data domain
∞ Infinity
∈ Element of
⊆ Subset
⊂ Proper subset⋃

Generalized union

Chemical species
D Diketene
DHA Dehydroacetic acid
G By-product
K Pyridine
OL Oligomers
P Pyrrole
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PAA 2-acetoacetyl pyrrole

n the complexity to flexibly identify generalizable models
rom dynamic data with conventional identification approaches
12].

Strategies to design experiments for the identification of data-
riven models are reported in the data mining literature. The field
f active learning (also query learning) is tightly connected
ith the theory of design of experiments (e.g. [8]) applied to

stablish structured models. Here, active learning approaches
re widely recognized to make the learning process more effi-
ient by actively selecting particularly salient data points x taken
o generate the data D = (x, y(x)). For constructing unstructured
ata models, a large number of active learning strategies exist:
n the one hand, all data points to be sampled can be designed
eforehand. Inter alia, this concept is realized in the construction
f random designs, (fractional) factorial designs [13] or space-
lling designs (including latin hypercube sampling [14] and its
ariants [15]). Space-filling designs should be used when there is
ittle or no information about the underlying effects of factors on
esponses. The aim is to spread the points as evenly as possible
round the space of n feasible model inputs. The designs fill the
I

I-dimensional space with points that are in some way regularly
paced. They are reported to be especially useful in conjunc-
ion with unstructured models [15]. Space filling designs depend
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either on the responses nor on the model used to approximate
hem.

Alternatively, new data can be selected adaptively in each
tep, depending on the set of already obtained data and/or their
pproximation. This is referred to as sequential design. Consider
he following problem: Given a training set D = {(xq, yq) ∈X×
, q = 1, . . . , nQ},X ⊂ RnI and a trained model, find a new

nput vector (the query) xnQ+1 ∈X such that the expected infor-
ation gain is maximal if (xnQ+1, ynQ+1) is added to the training

et. Here, ynQ+1 denotes the result of measuring at xnQ+1 ∈X
ndX ⊂ RnI is the space of feasible input vectors. Then, the next
uery can be obtained by optimizing some query criterion on the
hole space X. In the query algorithms proposed in literature,

he new data points are either chosen according to some heuris-
ic (e.g. [16]) or by optimizing some objective function such as
aximizing the expected information gain [17] or minimizing
odel uncertainty [18]. Cohn [18] and Cohn et al. [19] show

hat the expected generalization performance of active learning
s significantly better than that of passive learning. Zhang [20]
nd Seung et al. [17] report similar improvements. A comprehen-
ive review on active learning approaches has been presented by
asenjäger and Ritter [21]. Most of the approaches are restricted

o the case where only one new point at a time is queried, but
he methods can be generalized to the more complex task of
electing multiple new data points.

Yet, in the identification of unknown models y = f (x) from
ynamic process data, model inputs x(t) (and outputs y(t)) often
annot be chosen independently, but both depend on the experi-
ental degrees of freedom ϕ. Exemplarily, in the identification

f reaction kinetic laws considered in this work, the individual
oncentration measurements over time – serving as inputs to the
eaction kinetic model – depend on experimental settings such as
nitial concentrations, reactor design, feed rate and composition
nd, of course, the reaction itself that is unknown and needs to
e modeled. Hence, an appropriate choice of these experimen-
al degrees of freedom is required in order to guarantee reliable
stimation of the unknown functional relations.

To allow for an efficient, model-based design of new exper-
ments, for the identification of data-driven model parts in
ybrid or fully unstructured models, a new design methodol-
gy is proposed in this work. A criterion is developed to fill the
ulti-dimensional space of inputs to the unknown functional

elation(s) by appropriately selecting the experimental degrees
f freedom while taking into account the system dynamics.
he approach allows to simultaneously design the new experi-
ent for subsequent identification of multiple unknown models.
ith a process model contrariwise forming the basis of any
odel-based experiment design technique, an iterative design

nd model identification procedure results.
To construct appropriate models from available experimen-

al data in each step, an incremental identification approach [22]
s used. The approach naturally exploits the hierarchical struc-
ure inherent to any process model. Known information (such as

he dynamic mole balances) is incorporated to reduce the iden-
ification process to modeling uncertainties, i.e. the unknown
eaction kinetic laws to be identified by purely algebraic regres-
ion. The approach is used for its computational efficiency and

e
r

f

Fig. 1. Generic reactor scheme.

ts flexibility to apply any (e.g. data-driven) model structure to
onstruct the unknown reaction kinetics. In particular, training
lgorithms with inherent regularization (see e.g. [23]) can be
irectly employed to ensure generalizability of the data-driven
odels identified. The resulting dynamic hybrid model consist-

ng of the previously known information such as the dynamic
ole balances and the new information identified from data, i.e.

he reaction kinetic laws, is then taken as a basis for the next
esign step.

The paper is organized as follows: First, a short outline of
he fundamentals of incremental identification to construct the
nknown reaction kinetic laws is given in Section 2. To allow
or model-based sequential design for the identification of data-
riven model parts in dynamic process models, a new design
riterion is presented in Section 3. The criterion selects the
xperimental degrees of freedom such as to cover the multi-
imensional space of inputs of the sought functional relation(s)
n a space-filling manner. The proposed concept is illustrated
n an industrially relevant reaction, the acetoacetylation of pyr-
ole with diketene in Section 4. Finally, the conclusions are
ummarized in Section 5.

. Hybrid model construction using incremental
dentification

Consider the generic, ideally mixed, homogeneous and
sothermally operated reactor depicted in Fig. 1. If the num-
er and type of occurring reactions, their stoichiometries,
inetic laws and corresponding reaction parameters are known,
dynamic model of the reaction system can be constructed,

apable of predicting the reactor behavior over time. The mole
alance equations are set up first,

d

dt
[v(t)c(t)] = qin(t)cin(t) − qout(t)c(t) + fr(t), (1)

ith the reactor volume v(t), the volumetric feed rate qin(t) and
he molar concentration vectors c(t) and cin(t) of the species in
he reactor and the feed, respectively. In the balance equation
1), the reaction fluxes fr(t) for the various species need further
escription. Using the stoichiometric matrix N, containing the
toichiometric relations of the reaction network, a constitutive

quation is set up to express these reaction fluxes in terms of the
eaction rate vector r(t),

r(t) = v(t)NTr(t). (2)
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can then be taken to predict reactor behavior over time as
Fig. 2. Scheme of the incre

he reaction rates can finally be described by a set of constitutive
quations as functions of the concentrations c(t) and the reaction
arameters θ:

(t) = m (c(t), θ) . (3)

f suitable models for the reaction kinetics (3) are unknown,
nstructured models are often taken to construct the relation
etween rates r and concentrations c. The resulting overall reac-
or model, consisting of a structured part (e.g. mass balances,
toichiometries) and the unstructured reaction kinetics is hybrid,
ee e.g. [3,24,25].

To identify the unknown reaction kinetics from data, i.e.
odel parameters θ in a given structure, but preferably also the
odel structure m to ensure generalizability [26], measurements

ver time are supposed to be available. They include data for the
eactor volume v and the concentrations ci of some or all of the
pecies i involved in the reaction network. The flow rates qin and
out as well as the feed concentrations cin

i are set by the experi-
ental procedure and are therefore known as functions of time.
easurements taken are always corrupted with noise.
Incremental identification [22] may be applied to efficiently

et up the unstructured reaction kinetics. The identification
rocedure is schematically depicted in Fig. 2. It exploits the
ierarchical model structure inherent to any process model [27],
roviding stepwise identification of quantities as they are used
n the modeling process. Incremental identification includes the
ollowing steps, as marked in the figure:

1) The reaction fluxes f̂ r
i (t) are estimated individually from

concentration data for each measured species i using mole

balances only.

2) If the reaction stoichiometric model N is unknown, target
factor analysis [28] is used to test possible stoichiometries
and to determine the number of occurring reactions.

a
e
s
n

al identification approach.

3) With the stoichiometric information, the reaction rates r̂(t)
are then calculated from the fluxes f̂

r
(t).

4) Kinetic laws r = m(c) are obtained by regressing the time-
variant estimates of concentrations ĉ(t) and rates r̂(t) with
candidate kinetic model structures m.

A sequence of decoupled identification problems results. Due
o decoupling, the number of possible model candidates in each
tep is drastically reduced. In addition, kinetics identification is
estricted to the solution of purely algebraic regression problems
s process dynamics are considered in the flux estimation and
an be omitted subsequently. This allows the use of standard
raining algorithms to estimate a suitable model structure and
he corresponding parameters, as the inputs and outputs of the
nstructured reaction kinetics have been explicitly calculated. In
ontrast, for simultaneous model identification approaches (see
.g. [29]) specific training algorithms or extensive validation on a
et of potential structures are required to guarantee generalizable
odels [12]. Overall, incremental identification leads to a drastic

ncrease in efficiency and robustness, compared to conventional
imultaneous parameter estimation. Generally, incomplete mea-
urements can be handled by the approach. Within incremental
dentification, a bias is introduced in the flux estimation step [22],
hich propagates to the estimated parameters in the kinetic laws.
espite the bias introduced, Bardow and Marquardt [30] show

hat the precision is largely retained in incremental identification.
Having identified suitable models of the kinetic laws, a

ynamic, hybrid reaction kinetic model is constructed using the
alances and reaction stoichiometries [6]. The hybrid model
function of experimental conditions. How to choose these
xperimental conditions in order to achieve informative data
ets for the subsequent identification step will be treated
ext.
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. Coverage design

A number of approaches have been proposed in literature
o achieve sequential design for identification of unstructured

odels. Yet, when transferring these strategies to the identifi-
ation of unstructured reaction kinetics r = m(c) from transient
oncentration data c(t), two crucial problems are encountered:

1) Due to the dynamics observed in the measurements, not an
individual data point but rather a data set c = {c(tq), q =
1, . . . , nQ} is obtained from a single experiment. The data
points are not independent, but behave according to the sys-
tem inherent reaction dynamics. While the known sequential
design criteria can be extended to predict multiple data
points, the prediction of dependent data is not covered in
literature.

2) The reaction rates r are functions of the concentration data
c. In the functional relation to be established between the
two quantities, the concentration data represent the inde-
pendent variables. The set of concentration data points c
however cannot be designed directly, as presumed in the
active learning theories, but results from the set ϕ of exper-
imental degrees of freedom, i.e. c = c(ϕ). Here, a suitable
new design ϕ� such as initial concentrations or feed rates is
to be found which results in informative sets of concentra-
tions and rates.

Motivated by the restrictions in existing theories, a new
esign criterion is presented below. Similar to space-filling
esigns, the approach strives to cover the multi-dimensional
pace of inputs to the unstructured model part by appropriately
electing the experimental degrees of freedom while taking into
ccount the dynamic behavior of the reaction system. In the
erivation of a suitable criterion for selecting the new set ϕ of
esign variables, data-driven modeling of a single functional
elation is considered first. The criterion is then extended to
ystems with multiple functions to be modeled.

.1. Single function input space coverage

Consider a dynamic system, where the quantity y(t) is sup-
osed to be described by the unstructured model

(t) = f (x(t)) (4)

s a function of the nI independent variables x(t) =
x1(t), . . . , xnI (t)].

2 Both x(t) ∈X ⊂ RnI and y(t) ∈R depend
n the set ϕ of experimental degrees of freedom.
Assume that nE experiments have already been
onducted. For each of the nE experiments, data

ets Di = (xi, yi), xi = [xT
i (t1), . . . , xT

i (tnQ,i )]
T
, yi =

2 As the approach is universally applicable to numerous problem settings
ncluding transient data, the generic notation x and y is used for the model
nputs and outputs, respectively. In case of reaction kinetic identification, xi(t)
re the concentration data and y(t) corresponds to some kinetic quantity such as
flux or a rate.

m

δ

i
(

neering Journal 141 (2008) 264–277

yi(t1), . . . , yi(tnQ,i )]
T, i = 1, . . . , nE, taken at discrete sam-

ling times tq, q = 1, . . . , nQ,i, are available, where each input
et xi contains the data of the nI inputs taken at the nQ,i time
nstances sampled in the i-th experiment. A single vector of
nput data obtained at sampling time tq for the nI input variables
s denoted by (xi)q and the total set of input data available is
efined as

tot
nE

=
nE⋃
i=1

xi. (5)

ith the unknown function f identified from available data sets
i, i = 1, . . . , nE, a dynamic process model can be constructed

or predicting inputs x and outputs y as a function of experiment
esign ϕ. The new set ϕnE+1 of design variables is chosen such
hat the new input data xnE+1 = xnE+1(ϕnE+1) obtained from
he (nE + 1) th experiment in a certain way fills out the nI-
imensional space with additional data points.

A criterion for selecting ϕnE+1 needs to cover two require-
ents:

1) The new set xnE+1 should exhibit maximum distance to
existing data xtot

nE
. However, the exclusive application of

such a criterion may lead to very compact new data sets
with possible degeneration to a single data point (i.e. steady
state behavior). Thus, a second criterion is desirable.

2) The distances of data points within set xnE+1 should be as
large as possible in order to cover a preferably large input
range.

The sum of minimum distances of the elements of the set
nE+1 to those of the set xtot

nE
is

tot
nE+1(ϕnE+1) =

nQ,nE+1∑
q=1

δtot
nE+1,q(ϕnE+1), (6)

here δtot
nE+1,q denotes the distance of a new data point

xnE+1)q ∈ xnE+1 to the closest point within set xtot
nE

of already
vailable data:

tot
nE+1,q(ϕnE+1) = min

p
‖(xnE+1)q − (xtot

nE
)
p
‖2, p ∈ [1, ntot

Q,nE
],

(7

where ntot
Q,nE

=∑nE
i=1nQ,i is the number of data points in the set

tot
nE

.
Maximization of (6) fulfills the first requirement. The deter-

ination of δtot
nE+1,q constitutes a nearest-neighbor search which

s conveniently performed using Delaunay tesselation [31]. For
eeting the second requirement, the analogous criterion

sst
nE+1(ϕnE+1) =

nQ,nE+1∑
q=1

δsst
nE+1,q(ϕnE+1), (8)

s maximized, where δsst
nE+1,q expresses the distance of
xnE+1)q ∈ xnE+1 to the closest point in the same set:

δsst
nE+1,q(ϕnE+1) = min

p
‖(xnE+1)q − (xnE+1)p‖2,

p ∈ [1, nQ,nE+1], p �= q. (9)
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aking both requirements into account, a multi-objective opti-
ization problem results for designing ϕnE+1 with respect to
aximum coverage of XnI . An overall cost functional is con-

tructed by formulation of a weighted sum of the individual
bjectives [32]. Here, equal weights are heuristically chosen.
ence,

cov
nE+1(ϕnE+1) = δtot

nE+1(ϕnE+1) + δsst
nE+1(ϕnE+1), (10)

s used to calculate an appropriate design ϕ�
nE+1 for the

nE + 1)-th experiment from

�
nE+1 = arg max δcov

nE+1(ϕnE+1). (11)

.2. Multiple function input space coverage

As a generalization of the MISO system assumed in the pre-
ious section, we consider next the time-varying MIMO system
ith nO outputs y(k)(t), k = 1, . . . , nO, described by the unstruc-

ured model

y(1)(t) = f (1)(x(1)(t))
...

y(nO)(t) = f (nO) (x(nO)(t)) ,

(12)

ith x(k)(t) = {xj(t), j ∈ Xk}, k = 1, . . . , nO, denoting the
espective input vector at time t for model f (k), where Xk ⊆ X
escribes the relevant inputs for model k chosen from the set
associated with the available inputs. Depending on the physi-

al background of inputs xj, j ∈ X, the magnitude of their values
ay differ substantially. To achieve comparable conditions in the

alculation of distances, the inputs require appropriate scaling.
his is accomplished by scaling xj(t), j ∈ X, to dimensionless
uantities ξj(t) ∈ [0, 1], j ∈ X, according to

j(t) = xj(t) − xmin
j

xmax
j − xmin

j

, (13)

here the expected (or known) minimum (xmin
j ) and maximum

xmax
j ) input values are used as lower and upper bounds. Vectors

(k)(t) concatenating all ξj(t), j ∈ Xk, k = 1, . . . , nO, represent
he sets of scaled inputs at time t.

Data sets (ξ(k)
i , y(k)

i ), ξ(k)
i = [(ξ(k)

i )
T

(t1), . . . , (ξ(k)
i )

T
(tnQ,i )]

T
,

(k)
i = [y(k)

i (t1), . . . , y(k)
i (tnQ,i )]

T
, k = 1, . . . , nO, i = 1, . . . ,

E, taken at discrete sampling times tq, q = 1, . . . , nQ,i, are

vailable from the nE experiments. The number n
(k)
I of relevant

nput variables for model f (k) is n
(k)
I = dim(Xk). Having

dentified the models f (k), k = 1, . . . , nO, from the data sets
ξ

(k)
i , y(k)

i ), k = 1, . . . , nO, i = 1, . . . , nE, extracted from the
revious nE experiments, the new design vector ϕnE+1 for the
ubsequent experiment needs to be calculated. In analogy to
he MISO case, distance criteria δ

cov,(k)
nE+1 (ϕnE+1) are constructed
or each input space Xk = [0, 1]n
(k)
I , where Eqs. (6)–(10) are

eplaced by

cov,(k)
nE+1 (ϕnE+1) = δ

tot,(k)
nE+1 (ϕnE+1) + δ

sst,(k)
nE+1 (ϕnE+1), (14)

p

F
[
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tot,(k)
nE+1 (ϕnE+1) =

nQ,nE+1∑
q=1

δ
tot,(k)
nE+1,q(ϕnE+1), (15)

δ
tot,(k)
nE+1,q(ϕnE+1) = min

p
‖(ξ(k)

nE+1)
q
− (ξtot,(k)

nE
)
p
‖2,

p ∈ [1, ntot
Q,nE

], (16)

sst,(k)
nE+1 (ϕnE+1) =

nQ,nE+1∑
q=1

δ
sst,(k)
nE+1,q(ϕnE+1), (17)

δ
sst,(k)
nE+1,q(ϕnE+1) = min

p
‖(ξ(k)

nE+1)
q
− (ξ(k)

nE+1)
p
‖2,

p ∈ [1, nQ,nE+1], p �= q, (18)

here δ
tot,(k)
nE+1 and δ

sst,(k)
nE+1 are the distance criteria regarding ξtot,(k)

nE

nd ξ
(k)
nE+1 with k = 1, . . . , nO, respectively, and δ

cov,(k)
nE+1 is the

rgument considering both.
Using (14), the distance criteria δ

cov,(k)
nE+1 (ϕnE+1) can be derived

or each new input set ξ
(k)
nE+1(ϕnE+1). However, in the construc-

ion of an overall coverage criterion δ̆cov
nE+1(ϕnE+1), attempting to

chieve optimal coverage for all input spacesXk, k = 1, . . . , nO,
t turns out that the criteria δ

cov,(k)
nE+1 (ϕnE+1) are not directly compa-

able. A weighting factor is required to relate the criteria δ
cov,(k)
nE+1

s derived next.
Consider two random points ω1 ∈X and ω2 ∈X in X =

0, 1]d. The average distance between ω1 and ω2 depends on
he dimension d, as analyzed in the following. The two scalar
andom values ω1 and ω2 stem from uniform distribution over
0, 1]. The distance between ω1 and ω2 is defined as

= |ω1 − ω2|. (19)

sing the total probability theorem (see e.g. [33]), the probabil-
ty distribution p(ϑ) of ϑ is

(ϑ) =
∫ 1

ω1=0
p(ϑ|ω1)p(ω1) dω1 (20)

ith

(ϑ|ω1) = H(ω1 − ϑ) + H ((1 − ω1) − ϑ) , (21)

here H(v) is the Heaviside step function defined as

(v) =

⎧⎪⎪⎨
⎪⎪⎩

0, v < 0
1

2
, v = 0

1, v > 0

. (22)

valuation of (20) leads to the simple expression
(ϑ) = 2(1 − ϑ). (23)

or two vectors ω1 and ω2, randomly distributed over X =
0, 1]d , the expected distance between the two data is calculated
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Table 1
Expected distance Ed and dimensional weighting factor τd for d ∈ [1, 10]

d 1 2 3 4 5 6 7 8 9 10

Ed 0.333 0.521 0.662 0.778 0.879 0.969 1.052 1.128 1.200 1.268
τ 379
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P
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s
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w

r

F
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d 1.000 0.639 0.504 0.429 0.

s

Ed = E(ω1 − ω2)

=
∫ 1

ϑ1=0
. . .

∫ 1

ϑd=0
‖ω1 − ω2‖2p(ϑ1). . . p(ϑd) dϑ1 . . . dϑd

=
∫ 1

ϑ1=0
. . .

∫ 1

ϑd=0

[
d∑

i=1

ϑ2
i

]1/2

2d
d∏

i=1

(1 − ϑi) dϑ1 . . . dϑd,

(24)

ith ϑi = |(ω1)i − (ω2)i|, where (ωj)
i
, j = 1, 2 is the i-th ele-

ent of ωj .
Numerical values for Ed are listed in Table 1. Expected

istances increase considerably with dimensionality d. Con-
equently, distance criteria δ

cov,(k)
nE+1 are influenced analo-

ously by the input space dimensionality n
(k)
I . To reduce

he dependency on the number of inputs, the scaling
actor

d = E1

Ed

(25)

s introduced. Numerical values of τd are included in Table 1 for
∈ [1, 10].
Finally, an overall coverage criterion δ̆cov

nE+1(ϕnE+1) is defined
s

˘cov
nE+1(ϕnE+1) =

nO∑
k=1

τnI
(k)δ

cov,(k)
nE+1 (ϕnE+1). (26)

Analogously to (11), the appropriate design for the new
xperiment is calculated from

�
nE+1 = arg max δ̆cov

nE+1(ϕnE+1). (27)

he approach strives to maximize the coverage of the func-
ion input spaces. As no demands on a specific identification
rocess are made, it can be used with any identification
echnique.

. Application example: acetoacetylation system

The sequential design for reaction model identification using
he incremental approach [22] is illustrated for the acetoacety-
ation of pyrrole with diketene [34]. To validate the proposed
xperimental design procedure, simulated data are used. This
ay, the results of the identification process can easily be com-

ared to the model assumptions made during creation of the
ata. The simulation is based on the experimental work of Rup-
en et al. [35], who developed a kinetic model of the reaction
ystem.

N

0.344 0.317 0.295 0.278 0.263

In Section 4.1, the reaction system and the experimental con-
itions are introduced. The iterative identification of the reaction
ystem is carried out in Section 4.2 using unstructured models
or the reaction kinetic laws.

.1. Reaction system and experimental conditions

The reaction system comprises the reactions

+ D
K→PAA, (28a)

+ D
K→DHA, (28b)

→ OL, (28c)

AA + D
K→G. (28d)

n addition to the desired reaction (28a) of diketene (D) and
yrrole (P) to 2-acetoacetyl pyrrole (PAA), there are three unde-
ired side reactions (28b)–(28d). These include the dimerization
nd oligomerization of diketene to dehydroacetic acid (DHA)
nd oligomers (OL) as well as a consecutive reaction to the
y-product G.

The reactions take place in an isothermal laboratory-scale
emi-batch reactor, to which a diluted solution of diketene is
dded continuously. Reactions (28a), (28b) and (28d) are cat-
lyzed by pyridine (K), the concentration of which continuously
ecreases during the run due to addition of the diluted diketene
eed. Reaction (28c), which is assumed to be promoted by other
ntermediate products, is not catalyzed. Hence, in the simula-
ion model the reaction rates are described by the constitutive
quations

a(t) = kacP(t)cD(t)cK(t), (29a)

b(t) = kbc
2
D(t)cK(t), (29b)

c(t) = kccD(t), (29c)

d(t) = kdcPAA(t)cD(t)cK(t), (29d)

here ka, kb, kc and kd represent the rate constants.
The reaction fluxes Fr = [fr

D, fr
P, fr

PAA, fr
DHA, fr

OL, fr
G

]
can be

elated to the reaction rates R = [ra, rb, rc, rd] by

r = VRN,

ith the stoichiometric matrix⎡−1 −1 +1 0 0 0
⎤

=
⎢⎢⎢⎣−2 0 0 +1 0 0

−1 0 0 0 +1 0

−1 0 −1 0 0 +1

⎥⎥⎥⎦ (30)
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Table 2
Values of rate constants
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ka (l2/mol2 min) kb (l2/mol2 min) kc (1/min) kd (l2/mol2 min)

alue 0.053 0.128 0.028 0.001

or the set of species S = {D, P, PAA, DHA, OL, G} and
= diag{v} representing the volume measurements v =

v(t0), . . . , v(tnQ−1)].
The catalyst is not affected by the chemical reactions occur-

ing. Its dilution during the run of the experiment can be modeled
s

K(t) = v0

v(t)
cK,0, (31)

here cK,0 is the initial concentration of catalyst in the reactor.
nder the assumption that no volume change is induced by the

eactions occurring, the reactor volume is modeled as

dv(t)

dt
= qin, v(t0) = v0, (32)

ith constant volumetric feed flow rate qin.
The material balance for species i ∈ S reads as

dci(t)

dt
= qin

v(t)
[cin

i − ci(t)] + f r
i (t)

v(t)
, ci(t0) = ci,0. (33a)

in
D is the constant concentration of diketene in the feed. For
ll other species, cin

i = 0, i �= D. The initial conditions ci,0 are
nown.

To assess the performance of the identification approach and
o allow a comparison of the modeled and the true kinetics, con-
entration trajectories are generated using the model described
bove with rate constants given in Table 2.

Concentration data are assumed to be available for the set
f species S ={D, P, PAA, DHA, OL, G}. The measured con-
entrations are assumed to stem from a high-resolution in situ
easurement technique such as IR or Raman spectroscopy,

aken at a sampling interval ts = 20 s over the batch time
f = 60 min. The data are corrupted with normally distributed
hite noise. The standard deviation σi differs for each species

, depending on its calibration range. The calibration ranges of
he species can be taken from Table 3, where concentration data
re expected in the range 0 ≤ ci ≤ cmax

i , i ∈ S. The same relative,
ormally distributed errorασ = 1.0% within the component spe-
ific calibration range [0, cmax

i ] is assumed for each species. The
tandard error on the data thus is assumed to follow the relation
i = ασcmax
i , i ∈ S. (34)

he time-varying reactor volume v(t) is measured with neg-
igible error. In addition, error-free data on qin and cin

D exist.

w
e
r
a

able 3
oncentration ranges for calibration

cD (mol/l) cP (mol/l) cPAA (mol/l)

in 0.00 0.00 0.00
ax 0.38 0.80 0.45
neering Journal 141 (2008) 264–277 271

he concentration of catalyst K can be calculated from the
olume and the initial concentration of catalyst according to
q. (31).

To achieve reliable approximations of the multivariate reac-
ion rates, experiments are to be designed to obtain concentration
ata over a large domain. Seven design variables (cf. Table 4)
an be chosen independently between the limits specified in
able 4, to vary the experimental conditions. These are the
our initial concentrations cD,0, cP,0, cPAA,0 and cDHA,0, the
olumetric feed rate qin, constant during a single run, the con-
entration of diketene in the feed cin

D and the initial reactor
olume v0. The initial values of the design variables ϕ1 =
cD,0, cP,0, cPAA,0, cDHA,0, q

in, cin
D , v0] in the first experiment

an also be taken from Table 4. Negligible amounts of both
ligomers (OL) and the by-product G are supposed to be
resent in the reactor at t0 = 0, i.e. cOL,0 = 0.01 mol/l and
G,0 = 0.01 mol/l.

.2. Sequential identification of unstructured reaction
inetics

The iterative work process for the identification of unstruc-
ured reaction kinetic laws is illustrated by means of the
cetoacetylation example. Concentration data are generated
sing the model described above, which are then taken to iden-
ify the reaction system. The stoichiometric matrix N of the
otential reactions has been given in Eq. (30). However, the
umber and type of actually occurring reactions are assumed
nknown and need to be identified from the data. In addi-
ion, structured model candidates such as those in Eq. (29) are
ssumed unavailable for the description of the unknown rate
aws and data-driven approaches are applied to construct the
eaction kinetics. Using the coverage design criterion introduced
n Section 3, experiments are planned iteratively, based on the
ybrid model predictions identified from previous runs. Neural
etworks with 3 nodes in the hidden layer and Bayesian reg-
larization [23,36] as a training algorithm are used to predict
ppropriate kinetic models from available (simulated) experi-
ental data.
With the noise-corrupted concentration measurements

btained from the initial experiment, a primary model of the
eaction kinetics needs to be identified first: reaction fluxes are
stimated for the set of measured species S using mole balances
22]. Using the estimated fluxes, the network stoichiometric
odel is then identified using recursive target factor analysis

28]. In our example, all reactions (28a) to (28d) are accepted,

hich is in accordance with the assumption made in data gen-

ration. The reaction rates r̂j(t), j ∈ {a, b, c, d} of the occurring
eactions are then calculated as a function of time from the avail-
ble reaction fluxes and the network stoichiometries identified.

cDHA (mol/l) cOL (mol/l) cG (mol/l)

0.00 0.00 0.00
0.63 0.52 0.05



272 M. Brendel, W. Marquardt / Chemical Engineering Journal 141 (2008) 264–277

Table 4
Initial values and admissible range of independent variables

cD,0 (mol/l) cP,0 (mol/l) cPAA,0 (mol/l) cDHA,0 (mol/l) qin (ml/min) cin
D (mol/l) v0 (l)

Initial 0.14 0.30 0.08 0.01 5.0 6.0 0.5
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in 0.02 0.30 0.08
ax 0.14 0.80 0.20

s a next step, smooth concentration estimates ĉi(t), i ∈ S, are
btained from the noisy measurements.

At this point, data sets D(k)
1 = (x(k)

1 , y(k)
1 ), x(k)

1 =
(x(k)

1 )
T

(t0), . . . , (x(k)
1 )

T
(tnQ,1−1)]

T
, y(k)

1 = [y(k)
1 (t0), . . . ,

(k)
1 (tnQ,1−1)]

T
, k = 1, . . . , nO, have been obtained from the

rst experiment. Inputs x are the estimated concentration
ata ĉ and outputs y correspond to the estimated rates r̂.
he number of outputs is nO = 4 and the number of sam-
ling points in the first experiment amounts to nQ,1 = 181.
nput sets Xk for the kinetic models correspond to the
ets of concentrations for the species Sk influencing the
ndividual reactions, which are assumed known.3 Here,
1 = {D,P,K}, S2 = {D,K}, S3 = {D} and S4 = {D,PAA,K}.
he outputs are y

(1)
1 (t) = r̂a(t), y(2)

1 (t) = r̂b(t), y(3)
1 (t) = r̂c(t)

nd y
(4)
1 (t) = r̂d(t). Using data sets D(k)

1 , k = 1, . . . , nO, models
(k) are derived for the description of the individual reaction
inetics based on neural network approximation. The resulting
ybrid model, consisting of the dynamic mole balances, the
eaction stoichiometries and the reaction kinetic laws identified,
an now be taken to predict concentration trajectories as a
unction of the experiment design ϕ.

The design for the subsequent experiment is calculated
ccording to Section 3. For scaling the concentration data, serv-
ng as inputs to the approximation, to unity domain according
o (13), the concentration calibration range (Table 3) specifies
ower and upper bounds xmin

j and xmax
j , respectively. Based on

he predictions of the identified dynamic model, the design vec-
or ϕ�

2 for the following experimental run is calculated as the
olution of optimization problem (27).

With the augmented data set, stemming from the first and
he second experiment, the reaction kinetic models are updated
ccording to the procedure sketched above. A new design vector
�
3 is then calculated using the resulting, more precise dynamic
odel of the reaction system. Within the iterative experiment

lanning and model identification procedure, the model accu-
acy and thus the quality of the experiment design using the
overage approach gradually improve. The iterative process
s continued up to the pre-specified number of experiments,

E = 16. Alternatively, stopping criteria based on approxima-

ion accuracy may be chosen to limit the number of experiments.

3 In the case of unknown input sets, identification techniques with inherent
nput selection based on neural networks [37], kernels [38] or sparse grids
39] may be applied. These techniques alternatively also allow the inputs to
e determined from already available data prior to the iterative identification
rocess.
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To assess the quality of estimates achieved with the pro-
osed design criterion, identification results are compared to
hose obtained with a priori factorial design. To keep the num-
er of experiments at a moderate level, a 27−3 fractional factorial
esign [13] with nE = 16 experiments has been chosen, where
nitial concentrations cD,0, cP,0, cPAA,0, and the concentration
f diketene in the feed, cin

D , are considered as the main influ-
ncing (dominant) factors. The resulting design can be taken
rom Table 5. In comparison, Table 6 summarizes the resulting
esign vectors for the first nE = 16 experiments using coverage
esign.

Two representative concentration spaces,4 (cD, cP) and (cD,
K), are depicted in Figs. 3 and 4 for the fractional factorial
esign and the coverage design, respectively. For the latter, the
esigns are numbered in the order of their experimental realiza-
ion. Obviously, the coverage approach features a more complete
lling of the concentration spaces compared to the fractional fac-

orial design. Exemplarily, the resulting prediction for reaction
ate rb(cD, cK) after nE = 16 experiments using coverage design
s depicted in Fig. 5, together with the reaction rates estimated
or each of the experimental runs.

To be able to compare the results achieved for the fractional
actorial (FFC) and the coverage (COV) design, experimen-
al runs are simulated for nC = 50 random designs based on
he models identified using neural networks after nE = 16
xperiments. The average (ε̄r

j) and maximum (εr,max
j ) relative

rediction errors between predicted and true reaction rates for
eaction j are calculated as

¯r
j = 1

nCnQ

nC∑

=1

nQ−1∑
q=0

εr
j,q,
, (35a)

r,max
j = maxq,
ε

r
j,q,
, (35b)

r
j,q,
 =

∣∣∣∣∣ r
pred,

j (tq) − r

true,

j (tq)

r
true,

j (tq)

∣∣∣∣∣ , (35c)

here r
pred,

j (tq) denotes the model prediction for reaction

∈ {a, b, c, d}, at time tq for the 
 th random design and r
true,

j (tq)

s the true reaction rate obtained from the data generation model.

he number of sampling points is nQ = 181 for each run. The
verage and maximum relative prediction errors ε̄c

i and ε
c, max
i ,

espectively, between the hybrid model predictions c
pred,

i (tq)

4 Space (cD, cK) corresponds to the input set S2 = {D,K} for the kinetic model
f rb. Due to the three-dimensional nature of set S1 = {D, P, K}, subset {D, P}
as been representatively chosen in Figs. 3 (left) and 4 (left) to visualize the
oncentration space covered.
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Table 5
Fractional factorial design

Run cD,0 (mol/l) cP,0 (mol/l) cPAA,0 (mol/l) cDHA,0 (mol/l) qin (ml/min) cin
D (mol/l) v0 (l)

01 0.0200 0.3000 0.0800 0.0100 5.0000 3.0000 0.5000
02 0.0200 0.3000 0.0800 0.0500 5.0000 6.0000 1.0000
03 0.0200 0.3000 0.2000 0.0500 10.000 3.0000 1.0000
04 0.0200 0.3000 0.2000 0.0100 10.000 6.0000 0.5000
05 0.0200 0.8000 0.2000 0.0500 5.0000 3.0000 0.5000
06 0.0200 0.8000 0.2000 0.0100 5.0000 6.0000 1.0000
07 0.0200 0.8000 0.0800 0.0100 10.000 3.0000 1.0000
08 0.0200 0.8000 0.0800 0.0500 10.000 6.0000 0.5000
09 0.1400 0.3000 0.2000 0.0100 5.0000 3.0000 1.0000
10 0.1400 0.3000 0.2000 0.0500 5.0000 6.0000 0.5000
11 0.1400 0.3000 0.0800 0.0500 10.000 3.0000 0.5000
12 0.1400 0.3000 0.0800 0.0100 10.000 6.0000 1.0000
13 0.1400 0.8000 0.0800 0.0500 5.0000 3.0000 1.0000
14 0.1400 0.8000 0.0800 0.0100 5.0000 6.0000 0.5000
15 0.1400 0.8000 0.2000 0.0100 10.000 3.0000 0.5000
16 0.1400 0.8000 0.2000 0.0500 10.000 6.0000 1.0000

Table 6
Coverage-based experimental design for neural networks

Run cD,0 (mol/l) cP,0 (mol/l) cPAA,0 (mol/l) cDHA,0 (mol/l) qin (ml/min) cin
D (mol/l) v0 (l)

01 0.1400 0.3000 0.0800 0.0100 5.0000 6.0000 0.5000
02 0.0200 0.8000 0.0889 0.0335 5.0000 3.0000 1.0000
03 0.1400 0.3000 0.0898 0.0301 10.000 6.0000 0.5000
04 0.1400 0.8000 0.1694 0.0164 10.000 4.8692 1.0000
05 0.0200 0.8000 0.1694 0.0164 5.0000 3.0000 0.5237
06 0.0200 0.8000 0.1694 0.0164 6.8362 3.9801 0.5306
07 0.0200 0.8000 0.1694 0.0164 10.000 3.0386 1.0000
08 0.0200 0.3625 0.1693 0.0164 9.3750 6.0000 0.9677
09 0.0200 0.3000 0.1694 0.0164 10.000 3.3322 0.8947
10 0.0569 0.7655 0.1765 0.0355 9.9019 5.9103 0.7761
11 0.0200 0.3291 0.1765 0.0355 5.0000 3.0000 0.5000
12 0.0200 0.7218 0.1765 0.0355 6.9526 3.0000 0.5000
13 0.0734 0.7887 0.1765 0.0355 7.8018 3.9550 0.8273
14 0.0200 0.3000 0.1765 0.0355 6.3914 3.0000 1.0000
15 0.1400 0.3000 0.1765 0.0355 10.000 4.7675 1.0000
16 0.0202 0.7990 0.1765 0.0355 10.000 4.2775 0.9990

Fig. 3. Concentration trajectories for (cD, cP) (left) and (cD, cK) (right) using fractional factorial design.
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Fig. 4. Concentration trajectories for (cD, cP) (le

nd the true concentrations c
true,

i (tq) for species i ∈ S are calcu-

ated analogously.
The average and maximum relative reaction rate predic-

ion errors for the nC random designs are given in Table 7.
pproximation accuracies achieved with the coverage design

learly exceed those obtained by factorial design. For the rates
a through rc, good results are achieved concerning average pre-
iction errors ε̄r

j . Unreliable estimates result for the small values
f rate rd , the rate is not identifiable in practice. For both types
f design, high maximum errors result for all rates. These are
aused by very small reaction rates, where already small absolute
rrors have a large impact on relative accuracy.

Table 8 lists the average and maximum prediction errors with
espect to concentration data for the relevant species D, P, PAA
nd DHA. The more precise models for the individual reaction

ates achieved by coverage design accordingly lead to better
redictions of the corresponding hybrid models, which show
xcellent accuracies throughout the sets.

ig. 5. Estimated reaction rates rb (dotted lines) and reaction kinetic laws (sur-
ace plot) using the coverage approach.
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d (cD, cK) (right) using the coverage approach.

As a next step, the prediction errors are analyzed for a varying
umber of experimental runs using coverage design, exemplarily
valuated on the predicted concentration transients. Naturally,
he prediction error is expected to decrease for an increasing
umber of experimental runs. In Fig. 6 (left), the convergence of
rediction ratio �i(nE) for the individual concentrations i ∈ S =
D, P, PAA, DHA} is depicted, where the prediction error ε̄c

i

fter a number of nE experiments is scaled to the prediction
fter nE = 16 experiments according to

(
ε̄c
i (nE)

)

able 7
elative reaction rate prediction errors ε̄r

j and εr
j ,max obtained from fractional

actorial (FFC) and coverage (COV) design

ra (%) rb (%) rc (%) rd (%)

FC
ε̄r
j 6.624 21.28 7.174 349.9

εr
j ,max 379.3 3808 627.1 57685

OV
ε̄r
j 3.861 8.751 3.247 199.2

εr
j ,max 231.4 1321 263.8 18313

able 8
elative concentration prediction errors ε̄c

i and ε
c,max
i obtained from fractional

actorial (FFC) and coverage (COV) design

cD (%) cP (%) cPAA (%) cDHA (%)

FC
ε̄c
j 0.536 2.766 2.231 1.192

εc
j ,max 2.216 8.299 5.103 7.371

OV
ε̄r
j 0.384 0.489 0.977 0.944

εc
j ,max 3.067 3.051 2.352 10.87
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Fig. 6. Convergence of predictions for the coverage approach— �

Fig. 6 (right) shows the mean value for the set of concentra-
ions,

¯ = 1

dim(S)

∑
i ∈S

�i. (37)

ote that the prediction error is not strictly monotonically
ecreasing, due to the fact that depending on the design cho-
en, the estimated fluxes may exhibit substantial errors and thus
mpair the overall prediction.

To further analyze the performance of the coverage approach,
ts predictions are compared to those achieved using random
esigns (RND) for a variable number of experiments. The
xpression

i(nE) = ln

(
ε̄

c,cov
i (nE)

ε̄
c,rnd
i (nE)

)
(38)

escribes the ratio of average, relative concentration prediction
rrors obtained from designing the experiments using the cover-
ge approach (ε̄c,cov

i ) on the one hand, and the random approach
ε̄

c,rnd
i ) on the other hand. The ratio �i depends on the num-

er nE of experiments realized. Concerning random designs,
he random selection of a single, particularly suitable or dis-
dvantageous set of designs can lead to untypically good or
oor values of ε̄

c,rnd
i (nE) and cause notable scatter in �i(nE). To

btain a representative result, the term ε̄
c,rnd
i (nE) represents an

verage acquired from a number of nD = 40 random experimen-
al design sets, each set containing nE individual designs of the
xperimental degrees of freedom.

In Fig. 7 (left), �i is depicted for the individual concentra-
ion transients as a function of the experiments conducted. The

verage,

¯ = 1

dim(S)

∑
i ∈S

�i, (39)

b
C
a
f

) for the individual concentrations (left) and mean �̄(nE) (right).

eferring to the whole concentration set, is shown in Fig. 7
right). Clearly, the prediction accuracies using COV exceed
hose of random designs, in particular for moderate nE. A min-
mum of �̄ is found for nE = 3, where the errors achieved with
he coverage approach are only 5% of those obtained by ran-
om design. For nE = 8, the ratio is 20% and for nE = 16, we
alculate 40%.

A comparison to the prediction convergence of (fractional)
actorially designed experiments is more difficult to realize. For
hose, complete sets of experiments are selected in advance
he number of which usually represents a power of 2 for the

ost commonly employed two-level fractional designs [13]. The
esign chosen also depends on the experimenter’s often subjec-
ive choice of the dominant and subordinate parameters. In Fig. 7
right), the prediction ratio for the 16-experiment fractional fac-
orial design used hitherto is marked by a circle. Obviously, the
esign does not perform much better than an average random
esign for 16 experiments. Yet, as a single instance of the multi-
ude of potential fractional factorial designs, the result may not
e representative for the class of fractional factorial designs as
uch.

To allow a better comparison between coverage, fractional
actorial and random designs, identification results were calcu-
ated for a range of fractional factorial designs, varying in the
hoice of dominant parameters and the dependencies chosen for
he remaining (subordinate) design parameters. Similar to the
andom designs examined, identification results were computed
or nF = 40 different factorial designs and the prediction ratios
ere calculated in analogy to Eqs. (38) and (39). The results
btained for 4 (27−5), 8 (27−4) and 16 (27−3) experiments are
lotted in Fig. 7 (right) likewise.

Apparently, the average fractional factorial design yields bet-
er results compared to the random choice of design parameters,

ut the accuracy is worse compared to the coverage approach.
ompared to average fractional factorial designs, the residu-
ls achieved with COV are 25% for 4 experiments and 50%
or 8 and 16 experiments, respectively. Generally, the differ-
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Fig. 7. Ratio of prediction errors for COV vs. RND— �i(nE

nce between the design procedures becomes less distinct for a
igh number of experiments conducted (�̄

nE→∞→ 0). This is not
n unexpected result: with an increasing coverage of the feature
pace, the quality of designs becomes less important. Hence, the
overage approach is particularly powerful for a limited number
f experiments to be conducted.

. Conclusions

A novel design criterion has been derived for the identi-
cation of data-driven model parts from dynamic data. The
ulti-dimensional spaces of inputs to the models to be iden-

ified are covered by appropriately selecting the experimental
egrees of freedom. Therewith, the new experiment can simulta-
eously be designed for multiple models to be identified. With a
ynamic process model – identified from data gathered in previ-
us experiments – required to optimize the experimental degrees
f freedom for the following experiment, an iterative design and
dentification procedure results.

When applied to the identification of reaction kinetics using
eural networks in a hybrid process model structure, the
pproach performed significantly better than a priori chosen fac-
orial or even random designs. Much smaller prediction errors
ere achieved for the unknown reaction kinetics and the cor-

esponding dynamic hybrid process model, in particular for a
imited number of experiments. The coverage design criterion
roposed is not limited to the identification of reaction kinetics
ut universally applicable to model identification problems from
dynamic) data in which the independent model inputs cannot
e designed directly.

The design criterion can be applied independently of the iden-
ification technique used. In this work, incremental identification
as been used for its flexibility and computational efficiency.

he modeler is free to choose any data-driven or hybrid mod-
ls to construct the unknown model parts. High computational
fficiency is achieved due to problem decoupling. Yet, it has
een shown that additional experiments may also deteriorate
the individual concentrations (left) and mean �̄(nE) (right).

he approximation result using incremental identification. Miss-
ng error estimates on the reaction fluxes may lead to erroneous
eaction flux estimates, thus impairing the accuracy of identified
odels. Both model accuracy and consequently the design pro-

ess are expected to perform even better once the errors on the
uxes can be calculated.

Incremental identification supports the use of both structured
nd unstructured models for the reaction kinetic laws to be iden-
ified, based on the available knowledge on the individual model
arts [12]. While combined estimation of both model types from
ata is straightforward, the question arises on how to design the
ew experiment with respect to the identification of both struc-
ured and unstructured kinetic models from the same set of data.

possible solution approach is seen in the application of alterna-
ive cost functionals in the design for data-driven models. While
he criterion proposed optimizes the coverage of the input space,
aximization of the expected information gain (see [17]) may

epresent a further option. Such a strategy bears resemblance
ith that pursued in the design for structured approaches, i.e.
aximization of the information content of the experiments. A

ombination of both approaches thus appears feasible. Yet, to
pecify the information content gained from an experiment, error
stimates on the fluxes need further investigation.
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Zürich, 1994.

35] D. Ruppen, D. Bonvin, D.W.T. Rippin, Implementation of adaptive optimal
operation for a semi-batch reaction system, Comput. Chem. Eng. 22 (1-2)
(1998) 185–199.

36] D.J.C. MacKay, Bayesian interpolation, Neural Comput. 4 (3) (1992)
415–447.

37] M.A. Kramer, Nonlinear principal component analysis using autoassocia-
tive neural networks, AIChE J. 37 (2) (1991) 233–243.

38] A.M. Jade, B. Srikanth, V.K. Jayaraman, B.D. Kulkarni, J.P. Jog, L. Priya,

Feature extraction and denoising using kernel PCA, Chem. Eng. Sci. 58
(2003) 4441–4448.

39] O. Kahrs, M. Brendel, W. Marquardt, Incremental identification of NARX
models by sparse grid approximation, in: Proceedings of the 16th IFAC
World Congress, July 3–8, 2005, Prague, Czech Republic, 2005.


	Experimental design for the identification of hybrid reaction models from transient data
	Introduction
	Hybrid model construction using incremental identification
	Coverage design
	Single function input space coverage
	Multiple function input space coverage

	Application example: acetoacetylation system
	Reaction system and experimental conditions
	Sequential identification of unstructured reaction kinetics

	Conclusions
	Acknowledgements
	References


